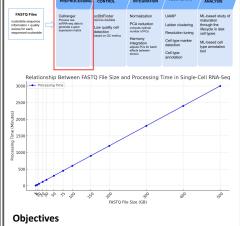


CloudMapper: Accelerating Single-Cell RNA Sequence Alignment with a Scalable and User-Friendly Cloud-Based Platform



Kunwoo Park¹, Jiadong Bai¹, Yutong Lei¹, Seul Lee², Dongliang Leng², Jing Zhang¹, Wei Wang³, Shuibing Chen², Chen Li¹
¹University of California Irvine, Irvine, CA; ²Weill Cornell Medicine, New York, NY; ³University of California Los Angeles, Los Angeles, CA

Introduction

Problem Statement

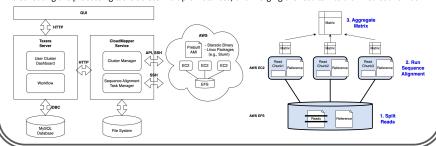
- Single-cell RNA sequencing (scRNA-seq) is a powerful method used to study the differences between individual cells, but the computational process of aligning RNA sequences to reference genomes remains a major bottleneck.
- Traditional alignment tools, like CellRanger, often require hours to days to process large datasets, even on high-performance computing (HPC) systems.
- Existing alignment workflows demand significant technical expertise to configure parallel computing environments like SLURM and manage multiple worker nodes.

- User-friendly Web UI: Providing a cloud-based platform that enables bioinformaticians to accelerate scRNA-seq alignment using web services
 - Elastic Usage of Public Cloud: Allowing users to dynamically construct a computing cluster based on the size and complexity of their datasets

How It Works

Run Sequence Alignment

Launching Cloud Resources


Countinger Close Country Country

Downstream Data Analysis Pipeline

Architecture

- With just a few clicks, users can launch a cluster of multiple EC2 instances, without needing to worry about complicated settings, e.g., SLURM, network configurations, security policies, or storage setups.
- CloudMapper facilitates parallel processing of large scRNA-seq datasets by dividing a dataset into chunks, distributing the processing tasks across multiple instances, and merging the results into a unified count matrix.

Results

- · A single server: 4.2 hrs
- CloudMapper: 0.3 hrs with \$3.19 (using 16 VMs)
- No local servers needed

# of /Ms	Time to start cluster	Data transfer	Running time	Total time	VM cost (\$/hr)	Total cost (\$)
	(hrs)	time (hrs)	(hrs)	(hrs)		
1	0.07	0.21	4.2	4.5	0.33	1.49
2			2.2	2.5	0.67	1.67
4			1.1	1.4	1.33	1.89
8			0.6	0.9	2.66	2.53
16			0.3	0.6	5.32	3.19

30GB FASTQ file, 12 reference gene ids, t3.2xlarge

Future Work

- Generalize CloudMapper Beyond scRNA-seq: expanding its capabilities to support other data.
- Intelligent Configuration Recommendations: introducing an intelligent recommendation engine that suggests optimal cluster configurations based on user-defined constraints like time and budget.

Want to Join the Platform?

Texera Platform: https://texera.dknet-ai.org

https://github.com/Texera/texera

Dknet Webinar: https://youtu.be/B81iMFS5fPc

Scan me!

National Institute of Diabetes and Digestive and Kidney Diseases