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Abstract—As leveraging large-scale data analytics becomes the

norm for many applications, platforms used to develop these

capabilities have become increasingly important. In this work,

we compare the benefits and drawbacks of implementations of

two commonly used data science platform paradigms: code-based

scripts and GUI-based workflows. We implement tasks in both

paradigms that provide examples of phases in the typical life

cycle of a data science project, including data wrangling, machine

learning (ML) model training, and inference. We examine the rel-

ative performance of the implementations under each paradigm

in various experimental settings. We discuss the benefits and

drawbacks associated with each platform implementation and

provide a foundation for future work in comparing data science

platform paradigms.

Index Terms—Data Science, Data Workflow, Jupyter Notebook,

Texera

I. INTRODUCTION

The demand for the development of analytics capabilities
has grown tremendously in recent years due to continued
improvements in leveraging data using various techniques such
as big data and machine learning (ML). As such, the need
for platforms to support data science projects has grown in
parallel. We have observed a rising trend in the data science
community to use various paradigms for implementing and
conducting data science tasks, such as scripts, GUI-based
workflows, and spreadsheets [1], [2].

This study uses several representative data science tasks to
compare an example of the script-based paradigm (Jupyter
Notebooks [3]) with an example of the GUI-based work-
flow paradigm (Texera [4]). Although either platform can
accommodate these tasks, each offers a distinct experience
concerning task development, execution, and scalability.

* The first two authors contributed equally to this research.

Script-based paradigm. For software developers, a natural
method of performing a data processing task is to write
code-based script in their choice of language (e.g., Python).
The script format requires knowledge of the implementation
language and provides users with the medium to implement
tasks with few restrictions and control over the execution of
the finished script. Users are able to execute components of
the task in their specified order and are able to automate
the extension of the script to as many data files or datasets
as the user desires. Figure 1 shows an example script, in

Step 1: Loading Data
In [2]:

Step 2: Sentiment Analysis Step
In [4]:

Step 3: Plotting Data
In [36]:

twenty_train = fetch_20newsgroups(subset='train')

text_clf = Pipeline([CountVectorizer(),TfidfTransformer(),SGDClassifier()])
text_clf.fit(twenty_train.data, twenty_train.target)
predicted = text_clf.predict(docs_test)

ax = sns.scatterplot(data=predicted)

Fig. 1: An example Jupyter notebook script that trains, evalu-
ates, and plots the results of a sentiment analysis model.

which a sentiment analysis model is trained and evaluated,
and the predicted results are plotted. There are several popular
script-based platforms for developing code in languages such
as Python and R. In this paper, we focus on Python and
implement tasks using the platform, Jupyter Notebook [3],
because of its huge popularity. For instance, Jupyter Notebook



is used in 11 million of the roughly 28 million public GitHub
repositories. Jupyter Notebook uses a kernel process to run the
code in individual cells and return results. Jupyter Notebook
provides a script-based tool for users to both implement and
present the results of data science tasks.

GUI-based workflow paradigm. Graphical user interface
(GUI) based workflow systems, or “workflow systems” for
short, such as Alteryx [5], KNIME [6], RapidMiner [7],
Einblick [8], and Texera [4], allow users to build and execute
data science workflows using a visual and intuitive interface.
A workflow example implemented in Texera is shown in
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Fig. 2: A GUI-based workflow in the Texera system for sen-
timent analysis on post-wildfire tweets. The workflow forms
a directed-acyclic graph (DAG) comprising operators linked
by edges. The operators handle data received from upstream
operators through input edges and transmit produced data to
downstream operators via output edges.

Figure 2. In this example, similar to Figure 1, a sentiment
analysis model is trained, evaluated, and the predicted results
are plotted. Workflow systems enable users to implement
complex data science tasks without the need for programming,
making them particularly advantageous for non-IT users with
limited coding skills. We are using Texera [4] as an example
of GUI-based workflow systems. Texera adopts a modular
approach with operators serving as the basic building blocks
of workflows. A broad range of operations are supported
by this system, ranging from simple filtering and projection
to visualization techniques. Texera executes a workflow on
an actor-based distributed engine called Amber [9], where a
coordinator actor manages worker actors to process data on a
cluster of machines.

In this work, we conduct a comparison of these two plat-
forms using Jupyter notebook and Texera as representatives.
Our comparison revolves around real-world use cases, with a
particular emphasis on essential stages in data science, includ-
ing data wrangling, model training, and model inference. We
present the benefits and drawbacks of the platforms in terms
of ease of use, modularity, scalability, and parallelization.

II. DATA SCIENCE TASKS

In this section, we describe four representative data science
tasks that will be used to compare Jupyter Notebook and
Texera.

A. Task 1: DICE (Data Wrangling)
This task represents a fairly complicated data wrangling

procedure. The goal of the task is to pre-process biomedical
data with a novel ML-based event extraction (EE) technique
called “data-efficient clinical event extraction” (DICE) [10].
Figure 3 shows a sample of a data set called “MACCROBAT”,

Fig. 3: Sample of the annotations and sentences contained in
the MACCROBAT dataset. Entity annotations are denoted as
Ti and event annotations are denoted as Ei.

which consists of 200 pairs of text files of clinical case
reports with accompanying files of annotations such as events
and entities. DICE takes in MACCROBAT and constructs
an output dataset called MACCROBAT-EE by linking each
sentence to its respective annotations.
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Fig. 4: Detailed steps of the DICE data wrangling task. The
annotation files and text files are first processed separately
before sentences are linked with their respective annotations.

As shown in Figure 4, the DICE task requires filtering
event annotations based on certain conditions, and joining with
entity annotations. Each event-entity set is then joined with its
respective sentence. We choose this task as an example of data
wrangling as it involves complex extraction and join operations
over text data in different formats, which is a crucial aspect
of data preparation in data science.

B. Task 2: WEF (Model Training)
This task, called “Wildfire Experience Framing” (WEF),

performs a multi-label classification over a dataset of 800
human-expert-labeled tweets related to climate change during
the onset of 20 wildfires in California between 2017 and
2021 [11]. Each tweet has one to four climate labels describ-
ing its content: making explicit links between wildfires and
climate change, suggesting climate actions, attributing climate
change to adversities besides wildfires, or being labeled as not
relevant. WEF fine-tunes four pre-trained BERT models [12]
to classify whether each tweet belonged to a given framing.



As a typical machine learning training task, WEF provides
insights into the training of machine learning models under
both paradigms, as shown in Figure 5. We choose this task as
an example of a typical model training step in data science.

Fig. 5: WEF is an ensemble machine learning pipeline that
trains four binary classification models to perform multi-label
classification for the four wildfire framings. Each framing
model is labeled 1-4 above.

C. Task 3: GOTTA (One-Step Inference)

Generative prompt-based data augmentation (GOTTA) [13]
is a novel few-shot question-answering model (FSQA), which
aims to predict answers to a set of questions from passages in a
setting with limited resources. As shown in Figure 6, GOTTA
augments a question-answering training data set with cloze
text 1 [12] to force the model to understand the context of the
data beyond the original questions. This task utilizes a BART
model [14] that has been fine-tuned to the FSQA task. The
model takes a paragraph and several cloze text questions as the
input, and returns generated responses as the output. GOTTA
is a typical machine learning inference task, which consists
of preparing questions and their answers based on input data,
applying a forward-pass of a trained model to batched input,
and evaluating the correctness of the output. We choose this
task as an example of one-step inference because, similar to
many machine learning models, it requires only a forward-pass
of data through the model to generate predictions.

D. Task 4: KGE (Multi-Step Inference)

This task is about triple prediction via knowledge graph em-
beddings [15] (“KGE” for short) on graph machine learning.
The KGE task takes candidate Amazon products as the input,
and uses a pre-trained knowledge graph model of a particular
Amazon user to predict the products that the user is likely to

1Here we refer to text formatted as a cloze task. A cloze task is a sentence
in which a keyword or phrase is masked out and the objective of the task is
to correctly identify the missing word/phrase.
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Fig. 6: GOTTA is an example task of black-box machine
learning inference, where the trained model is applied to input
and returns predictions.

purchase in the future. The KGE task is a typical data science
inference job.

As shown in Figure 7, the task consists of multiple mini-
steps. First, each product candidate goes through a filter, which
removes candidates that are no longer available, e.g., those that
are out-of-stock. A knowledge graph embedding table is then
loaded into memory and used to match each product with its
corresponding embedding. The product embeddings are then
scored, ranked, and fed through a reverse lookup function to
return the most likely products that the user would purchase
in the future. We choose this task because it provides insights
into how each platform is able to support multi-component
inference prediction generation.

III. COMPARATIVE ANALYSIS OF
JUPYTER NOTEBOOK AND TEXERA

In this section, we lay out the aspects of our comparative
analysis of Texera and Jupyter Notebook. By comparing these
two platforms, we aim to gain insights into their strengths and
limitations in the context of their use as data science platforms.
In general, we see that Jupyter Notebook offers customization
at the cost of manual effort, whereas Texera offers many built-
in features at the cost of customization.

A. Aspect #1: Abstraction
The level of abstraction in a paradigm plays a crucial role in

conveying information to the user during the implementation
of a data analysis task. In comparing the levels of abstraction
between Texera and Jupyter Notebook, we assess how each
platform represents the task, reports execution progress, and
presents the data.

Presentation of a Task. The first level of abstraction is how
a task is presented to the user. The level of detail in the
presentation of Jupyter Notebook is suitable for presenting
and editing implementation specifics, while Texera is more
suited to visualizing high-level abstractions of data flow. In
Jupyter Notebook, the user’s code is presented in a top-
down, sequential manner, as demonstrated in the example in
Figure 1. This presentation style offers a detailed view of the
task’s implementation, displaying executable code or mark-
up text within each cell along with the cell’s output. Jupyter
Notebook also allows users to simultaneously collaborate on
individual operators. Jupyter Notebook does not explicitly
show the relationship between functions and cells, users can
choose to execute the cells in an arbitrary order, with the
state stored in the kernel being used by different cells. On the
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Fig. 7: Detailed steps of the KGE task. Products are filtered by relevance and matched with users deemed most likely to
purchase them in the future.

other hand, the workflow-based paradigm adopted by Texera
provides a graphical user interface (GUI) that offers a high-
level abstracted representation of the workflow as a graph,
showcasing the flow of data through various operators, as
shown in Figure 2. Texera workflows consist of operators with
explicit connections that indicate data flow. Optionally, users
can choose to elaborate a particular operator and even view
the code if desired. Both applications serve valuable purposes
in a data science project and are accessible to collaborators
with varying levels of expertise.

Displaying the state of a task. The second level of abstraction
is how a task’s runtime status is displayed. Jupyter Notebook
provides monitoring tools and allows users to add functionality
as desired, while Texera integrates monitoring into its visual
interface. In Jupyter Notebook, the execution progress of a
task is presented by displaying a loading icon, indicating the
currently running cell, and utilizing a sequential execution
counter to label the order of cell execution. Additionally,
users have the option to incorporate external libraries like
“tqdm” in Python to enhance the user experience further.
These libraries enable the display of a progress bar, providing
a visual representation of the task’s completion status. This
progress bar offers a time-based indication of the progress
being made during the task execution. Jupyter Notebook also
presents a stack trace at the cell level, allowing users to track
the steps of execution to the earliest function call in the cell.
In contrast, Texera focuses on displaying data progress rather
than time progress. The Texera interface utilizes different
colors to visually represent the status of each operator. It
indicates various states, including initializing, running, being
paused, and resuming execution. Furthermore, Texera also
provides information about the amount of data being processed
by each operator, offering a clear depiction of the data progress
within the workflow. In addition to displaying the progress of
a task, another consideration is how error traces are presented.
Texera reports error traces at the operator level, meaning that
only the operator in which the issue occurred reports the
error. Both platforms allow users to identify and isolate the
problematic cell or operator to perform debugging.

Visualizing data linkage of a task. The third level of
abstraction is how a task’s data lineage is presented. Code
blocks in Jupyter Notebook are presented in a sequential
order, which is useful for illustrating progression or piecemeal
experimentation. Texera provides a global representation of
the task, which allows users to gain an intuitive understand-
ing of the workflow at a glance. Data linkage refers to
the connection and flow of data between different steps or
components. In Jupyter Notebook, data linkage is typically
established through programming functions that define the
input and output of each step. The script is then executed cell
by cell, without imposing a specific order on the execution
sequence. Note that the order of executable code cells may not
necessarily align with the actual flow of data. As illustrated
in Figure 8, although the function “Write” is defined after
“Sentiment Analysis”, the user may choose to execute “Write”
before “Sentiment Analysis”. This flexibility allows users to
freely orchestrate their implementation, but it may result in
an inaccurate representation of the applied steps to the input
data. In contrast, Texera executes the operators of a workflow

def Load():
    twenty_train = fetch_20newsgroups(subset='train')
    return twenty_train

def Sentiment_Analyisis(twenty_train):
    text_clf = Pipeline([CountVectorizer(),TfidfTransformer(),SGDClassifier()])
    text_clf.fit(twenty_train.data, twenty_train.target)
    predicted = text_clf.predict(twenty_train.test)

def Write(data):
    with open("output.txt", "w") as f:
        for line in data:
            f.write(dataline)

data = Load()
Write(data)
Sentiment_Analyisis(data)

Fig. 8: Example showing that script functions in Jupyter
Notebook can be executed in any arbitrary user-defined order.

based on the order specified in the directed acyclic graph
(DAG) of operators. This approach necessitates that each
operator explicitly defines its input data and output data. Users
are required to explicitly connect operators with links that
represent the flow of data. Each platform offers a unique user



interface that caters to the needs of data scientists and is better
suited for different scenarios.

B. Aspect #2: Execution Customization vs. Ease of Use

The second comparison we consider is the amount of
environmental and methodological control that the platform
provides to users. Jupyter Notebook allows users to build
frameworks according to their own specifications, not encum-
bering the implementation with constraints but leaving the user
responsible for ease of future use. Texera, on the other hand,
requires the user to develop their framework in a set of iterative
operators, which is less flexible, but results in a pipeline with
a more accessible user interface.

User control of Implementation. Users who intend to in-
crease the scale of processing data when developing a Jupyter
Notebook on a single machine need to manually build the
support infrastructure, such as data partitioning and result
aggregation, into their code. As a result, Jupyter Notebook
does not need to place restrictions on user control of a script
beyond those placed on a typical Python script. For instance,
consider the DICE task. A straightforward approach that can
be implemented using Jupyter Notebook is to load the set of
annotations into memory as a hash table and then loop through
the sentences while probing the annotation hash table to
match sentences with their corresponding annotations. Texera
currently does not support global variables (i.e., variables
available to all operators) and requires explicit data passing
between operators. Thus, it prevents the use of a global
annotation table, and instead requires passing copies of both
the list of sentences and annotation table through each operator
in which they are needed. Texera requires users to adhere to
its predefined explicit data passing structure, which reduces
customization options for the execution of the task in return for
a structured user interface and pipelined operator execution, as
shown in Figure 9.
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Fig. 9: Visual representation of a simple Texera workflow,
displaying the data processed by individual operators during
execution. Each operator features two numbers, denoting the
number of input tuples and output tuples, respectively. The
source operator (JSONL Processing) only shows the output-
tuple count, while the sink operator (View Results) only
shows the input-tuple count.

Tuning resource usage for data batching and module paral-

lelism. Another comparison we consider is how each platform
is able to leverage available computational resources. Jupyter
Notebook requires the user to specify how their process

leverages computational resources and manually search for an
optimal configuration for each new environment the process is
run in. Consider the batching done during subsection II-C for
the GOTTA inference task, which, in the Jupyter Notebook,
is implemented by the user leveraging imported functions
(e.g., PyTorch) as shown in Figure 10. This batching method

Fig. 10: Explicit construction of a batched dataset.

requires the user to manually tune the batch size for the given
environment. Texera automates the tuning of computational
resource usage configurations, thus removing the burden from
the user. For instance, users are able to parallelize operators
by selecting the number of workers used to execute each
operator, and the backend engine of Texera manages the
distribution of work amongst computational resources. The
batching performed during GOTTA in Texera can be done by
using an operator to construct each input (question, masked
answer, paragraph) and passing the individual input to the
subsequent operator in a batch size that Texera tunes to the
available computational resources. Jupyter Notebook requires
users to manually configure their memory usage, level of
module parallelism, and configure their work to effectively
leverage hardware. In comparison, Texera enforces iterative
data processing so that it is able to automatically tune resource
usage, removing the burden of management of parallelism and
hardware usage from users.

C. Aspect #3: Supporting Multiple Programming Languages
The third comparison we consider is how each platform

leverages programming languages to implement the task. Both
Jupyter Notebook and Texera benefit from common func-
tions that are efficiently implemented and highly reusable,
e.g. Python libraries. Jupyter Notebook typically leverages
packaged software written in Python. Although it is possible
to use libraries in C (e.g., numpy), it takes a substantial
amount of user effort to write code in another language. On the
other hand, Texera operators can be implemented in languages
designed for the desired task, e.g., Python for data science
tasks, Scala for functional programming, etc.

Incorporation of multiple languages. There is a need for data
science platforms to support different languages to support col-
laborations because users with different domain backgrounds
may use different languages (e.g., Python for ML, R for
statistics, Julia for Bioinformatics, etc.). Jupyter Notebook
requires users to implement code in Python, but allows for
processes written in other languages to be launched during
the execution of the notebook; this allows scripts written in



other languages to be incorporated into a data science task,
but requires that users manually define data passing between
scripts. Texera allows operators written in languages other
than Python (e.g., Java, Scala, etc.) to be incorporated into
user-defined workflows with no additional overhead. Both
Jupyter Notebook and Texera support the execution of pro-
cesses written in multiple languages to cater to cross-domain
collaboration, however Texera provides a lower barrier-to-
entry because it provides cross-language data handling out-
of-the-box.

Impacts on collaboration. We also consider how the flex-
ibility of each platform with respect to languages used in
implementations impacts collaboration. Collaborations on data
science projects typically involve individuals with diverse
backgrounds and skill sets. Jupyter Notebook does not provide
a framework for collaboration between two users working
in different languages other than saving intermediate data
between steps and transferring it manually. As previously
mentioned, Texera is able to incorporate modules written in
different languages. This capability allows users from different
backgrounds to implement tasks in the language they find
the most suitable. Both platforms are able to incorporate
modules written in other languages; however, Texera provides
an infrastructure for data transfer between modules written in
different languages without additional user intervention.

D. Aspect #4: Performance on Large Data
Lastly, we compare the performance of each platform as the

data size increases. We consider several factors that impact
the scalability of both platforms, such as overhead, pipelin-
ing/parallelism, hardware utilization, and language efficiency.

Runtime overhead. Jupyter Notebook does not require data
serialization and deserialization between code blocks and can
be executed similarly to a standard Python script. Texera is im-
plemented in Scala and supports operators written in multiple
languages. When using Texera, data transfer occurs between
these operators, requiring serialization and deserialization pro-
cesses to bridge the gap between different languages, which
introduce runtime overhead.

Pipelining/Parallelism and resource usage. Jupyter Note-
book executes code using a single thread by default and
requires the user to incorporate multi-threading or multi-
processing for optimal use of computational resources. To
fully leverage the available resources, users typically rely on
available packages to orchestrate multi-threading or multi-core
resource usage, such as “ray” [16] in Python. In contrast,
Texera workflows supports multiple types of parallelism by
default. The first type is known as data parallelism, which
allows users to specify the number of workers for each
operator, and each worker processes a portion of the input
data. The second type is pipelined execution, which allows
subsets of the input data to be processed by upstream operators
to process and sent downstream as output without waiting for
the rest of the input to be processed. This makes it possible

for sequentially ordered operators to execute in parallel and
reduces the total runtime.

Language Efficiency Another aspect of comparison we con-
sider is the language-based efficiency of modules implemented
in Jupyter Notebook and Texera. For instance, consider the
join step of the KGE task subsection II-D, which loads an
embedding table into memory and probes the table for the
embedding associated with each product. The join step is
a bottleneck with respect to time in this task, and Jupyter
Notebook users are able simply call the Pandas function
dataframe.merge to leverage a Python implementation of the
join step. While this option is provided to Texera users,
Texera also provides users a join operator written in Scala,
which is a more efficient language for this task, as shown
in Figure 11. This allows users to leverage more efficient
implementations of subtasks without needing to implement
cross-language data transfer. However, this requires that Texera
provides an operator or set of operators off-the-shelf that can
accomplish a logically similar task. Both Texera and Jupyter
Notebooks are able to incorporate packages written in more
efficient languages, and Texera is able to pass data between
functions written in different languages in a single workflow.

Scala Join 
Implementation

Python 
Operator

Python Join 
Implementation

Input 1 Java Operator

OutputInput 2 Python Operator R Operator

Fig. 11: A Texera workflow can contain operators implemented
with multiple languages. Operators can be replaced by opera-
tors implemented in other languages.

The platform-specific benefits and drawbacks discussed
earlier become more apparent as the input data size in-
creases. Jupyter Notebook offers users implementation flex-
ibility and reduced execution overhead. Texera provides auto-
mated pipelined execution, and resource optimization.

IV. EXPERIMENTS

In this section, we show the results of the experiments used
in our comparison of Jupyter Notebook and Texera.

A. Experimental Setup

We ran experiments on two computing clusters on the
Google Cloud Platform [17]. Each cluster had four virtual
machines, each of which had 8 vCPUs, 64 GB RAM, and 100
GB HDD. We used Python of version 3.8.10, and PyTorch of
version 1.12.1 for all the experiments. The following are the
details of the two clusters.

Ray-cluster. This cluster was used to conduct Ray-based
experiments. Ray is a Python-based framework for scaling data
science applications using computational resource clusters. We
used one machine as the head node of the cluster to host
the Ray service, and four machines as the worker nodes. Ray
conducts data parallelism where each worker node processes



a partition of the input data. The scripts were submitted from
a command line interface on the head node. We recorded the
duration of each script, from the time it was submitted to the
Ray server until the return of results.

Texera-cluster. This cluster was used to conduct Texera-
related experiments. One machine was used as the coordinator
node, which hosted the Texera service and its web server for
its graphical user interface (GUI). We used four machines as
worker nodes connected to the coordinator. Texera conducts
intra-operator data parallelism as well as pipelined parallelism
between operators. We initiated tasks from the Texera GUI on
the coordinator node, and recorded the duration of each task,
from the time it was submitted on the GUI until completion
of all the workers and return of results to the coordinator.

Implementation configuration. The implementation of the
four tasks incorporates different parallelism settings. For the
WEF and GOTTA tasks, PyTorch is utilized, employing
subprocess-parallelism to optimize their execution time. The
DICE and KGE tasks are specifically designed to run on a
single thread. Additionally, the execution clusters introduce
an extra layer of parallelism on top of the settings configured
within each task. Ray relied on a resource pool for its sched-
uler to allocate workers and Texera users explicitly configured
the number of workers for an operator. The only way to change
the number of workers in Ray was to configure the number of
CPUs that Ray could use [18], [19]. To have a fair comparison
with the one-worker setting in Texera, we configured Ray’s
num_cpus parameter to 1. Ray configured the underlying
frameworks (PyTorch) to use 1 CPU by default to limit
contention for resources [18], [19]. The Texera implementation
did not limit resource contention or the underlying frameworks
(PyTorch).

B. Performance Metrics
We use the following metrics in the experiments:
• Total execution time: this metric provides an indication

of how efficient each task is;
• Number of parallel processes: this metric measures the

parallelism of the execution and is used together with the
previous metric to provide an insight into the efficiency;

• Number of lines of code: this metric provides a measure
of how much work is needed to implement a task.

• Number of operators: this metric measures the number
of subtasks each task can be divided into.

C. Experiment #1: Modularity

Level of modularity. We measured the relationship between
the number of modules that a task is implemented by and the
total execution time in both Texera and Jupyter Notebook.
The KGE inference task was the only task we performed
experiments in which separating and combining subtasks could
be performed without changing the task’s logic, thus it is the
only task shown in this experiment. In this experiment, all
the KGE operators on Texera were implemented in Python.

As shown in Figure 12b, we saw a negatively-correlated
linear trend in the execution time associated with the increase
in the number of logically separable components used to
implement the task, or a greater degree of modularity, with
diminishing returns. Specifically, the 1-operator workflow took
138.97 seconds and the 5-operator workflow took 114.05
seconds (19.70% faster) for the input data of 6.8k products.
In contrast, the 6-operator workflow took 115.143 seconds
(0.95% slower). This result supports the claim that Texera
benefits from pipelined execution, i.e., starting the execution
of the subsequent operator before the current operator has
processed all its data points, to offset the overhead it introduces
when transferring the data between operators until a task-
specific threshold of modularity.

Total Lines of Code. We measured the number of lines of
code used to implement each task in both Texera and Jupyter
Notebook. We observed that for the DICE, WEF, GOTTA, and
KGE tasks, the Jupyter Notebook implementations required
377, 68, 120, and 128 lines, respectively, and the Texera imple-
mentations required 215, 62, 105, and 134 lines, respectively.
This result validates the assertion that Texera can implement
the tasks in similar or fewer lines as the Jupyter Notebook
implementation.

(a) (b)

Fig. 12: Comparison of the modularity of tasks. (a) Number of
lines of code in Jupyter Notebook and Texera implementations,
and (b) KGE execution time on different numbers of workflow
operators (the time for script is included for reference).

D. Experiment #2: Language Efficiency
We used the KGE inference task to evaluate the impact

of languages on the performance. We employed two types
of operators in Texera: Scala operators and Python operators.
We chose a KGE Texera implementation with three Python
operators. To construct the corresponding workflow with Scala
operators, we replaced one of the three Python operators
performing table joins with nine Scala operators to implement
the same logic. We compared the performance of these two
Texera workflows.

As shown in Table I, the Scala-based KGE workflow
was 24.54% and 0.92% faster than the Python-based KGE
workflow for the data set of 6.8k products and the data set
of 68k products, respectively. This result indicated that the



6.8K pairs 68K pairs

Time for
Scala-based operators (s) 98.67 1,159.82

Time for
Python-based operators (s) 126.28 1,170.57

TABLE I: Comparison of KGE execution times of swapping
Python-based operators and Scala-based operators.

workflow-based implementation benefited modestly from the
efficiency of the operators written in Scala when the input data
size was smaller, and this efficiency did not scale as the input
data size increased.

E. Experiment #3: Scaling Dataset Size

We examined the performance of the four data science
tasks over datasets of different scales to compare how the two
paradigms perform as the dataset size increased.

(a) DICE (b) WEF

(c) KGE (d) GOTTA

Fig. 13: Comparing execution time as the data size increased.

DICE. The execution time of the Jupyter Notebook followed
a roughly linear curve, while the execution time of the Texera
workflow followed a roughly logarithmic curve. As shown in
Figure 13a, at the smallest and largest dataset sizes of 10
and 200 text and annotation file pairs, the Jupyter Notebook
implementation took 14.71 and 239.54 seconds. On the other
hand, the Texera workflow took 10.73 and 107.83 seconds
(37.12% and 122.15% slower), respectively. This performance
gain was due to the pipelined execution in Texera (as discussed
in subsection III-D).

WEF. As shown in Figure 13b, the execution time of the
Jupyter Notebook implementation and Texera implementation

of WEF both followed a roughly linear curve and achieved
similar performances. The Jupyter Notebook implementation
took 1285.82, 1922.86, and 2587.94 seconds. The Texera
workflow took 1264.93, 1896.01, and 2525.96 seconds (2%,
1%, and 3% faster) to train the model on 200, 300, and
400 tweets, respectively. This result was expected as machine
learning training tasks are CPU intensive rather than data
incentive. Since WEF did not use a distributed training al-
gorithm, each paradigm was executing it with no parallelism.

GOTTA. The execution time of the Jupyter Notebook imple-
mentation and Texera implementation of GOTTA followed a
roughly logarithmic curve. As shown in Figure 13d, for the
dataset size of 1, 4, and 16 paragraphs, the Jupyter Notebook
implementation took 163.22, 463.96, and 1389.93 seconds.
The Texera workflow took 64.14, 149.45, and 460.13 seconds
(151%, 211%, and 201% faster), respectively. This result was
due to two reasons. The first was that Ray required uploading
large objects such as models into an object store [16], which
required a lot of memory and added execution time for each
access. On the other hand, the Texera implementation loaded
the model and distributed it through the network to each
worker, which resulted in a lower overhead compared to Ray’s
shared object space. The second reason was that Ray limited
PyTorch to 1 CPU, while Texera did not enforce such a
limitation on PyTorch.

KGE. As shown in Figure 13c, the execution time of both
the Jupyter Notebook and Texera workflow implementations
of KGE followed a roughly linear curve. The Jupyter Note-
book took 90.69 and 975.46 seconds. The Texera workflow
took 135.85 and 1350.50 seconds (33% and 28% slower,
respectively) at the two data scales. In contrast to GOTTA,
the performance of KGE using Jupyter Notebook was less
impacted by the overhead of Ray’s shared object space due to
the fact that the KGE model was 375 MB, which was much
smaller than the GOTTA model (1.59 GB).

F. Experiment #4: Number of workers
We examined the performance of DICE, GOTTA, and KGE

when we assigned different numbers of workers to compare
the two paradigms. We excluded WEF from this experiment
because under this setting WEF becomes a distributed training
task, which is not the focus of this work.

DICE. The execution times of the DICE Jupyter Notebook
and Texera implementations followed a roughly linear curve.
As shown in Figure 14a, for 1, 2, and 4 workers, the Jupyter
Notebook implementation took 239.54, 148.04, and 85.65
seconds respectively, compared to the Texera workflow that
took 107.82, 87.13, and 57.21 seconds (122%, 70%, and 50%
slower), respectively. The initial performance difference was
due to the pipelined execution in the Texera implementation.
When multiple workers were used, the Jupyter Notebook
implementation was able to reduce the difference in execu-
tion times by roughly 50%. The Texera implementation still
outperformed the Jupyter Notebook implementation.



(a) DICE (b) GOTTA (c) KGE

Fig. 14: Comparison of execution time as the number of workers increased.

GOTTA. The execution times of the GOTTA Jupyter Note-
book and Texera implementations followed a roughly linear
curve. As shown in Figure 14b, for 1, 2, and 4 workers, re-
spectively, the Jupyter Notebook implementation took 463.96,
234.68, and 139.66 seconds respectively, compared to the
Texera workflow that took 149.45, 104.16, and 83.37 seconds
(210%, 125%, and 67% slower), respectively. The initial
performance difference was due to the fact that the Jupyter
Notebook implementation relied on the shared object space,
which was less efficient for the one-worker setting. However,
as additional workers were introduced, the Jupyter Notebook
implementation was able to reduce the relative difference in
the execution times by roughly 70%. The Texera implementa-
tion still outperformed the Jupyter Notebook implementation.

KGE. The execution times of the KGE Jupyter Notebook and
Texera implementations followed a roughly linear curve. As
shown in Figure 14c, for 1, 2, and 4 workers respectively,
the Jupyter Notebook implementation took 975.46, 459.46,
and 273.89 seconds compared to the Texera workflow that
took 1350.50, 618.39, and 383.58 seconds (28%, 26%, and
29% slower), respectively. We observed that the Jupyter Note-
book implementation consistently outperformed the Texera
workflow and that both implementations showed intuitive
reductions in runtime as the number of workers increased for
this task. This occurred because the KGE task was imple-
mented using subprocess-parallelism, which fully utilized all
the resources in the cluster. This results in Texera’s pipelined
execution offering little additional benefit but more overhead
instead.

V. RELATED WORK

Data science work practices. Many papers [20]–[22] dis-
cussed common practices to conduct a data science task. These
studies show that a data science task comprises numerous
stages such as preparation, modeling, and deployment, where
each stage consists of multiple steps that require collaboration
among individuals with diverse backgrounds. This insight
motivates our evaluation of the two paradigms using examples.

Evaluations of workflow systems. Data-processing systems
such as Spark [23] and Flink [24] have been evaluated in many
works [25], [26]. These implementations have been evaluated
on performance metrics, but have not been compared to GUI-
based workflow systems based on these metrics. Similarly,
GUI-based workflows such as RapidMiner [7] and Knime [6]
have been most evaluated and compared for their user ex-
periences [27], [28]. Additionally, some studies have specif-
ically evaluated the parallel performance of each individual
system [29], [30] rather than comparing it to notebooks. In
this work, we contribute a holistic evaluation of both the user
experience and the performance of the GUI-based workflow
system Texera and Jupyter Notebook.

Evaluations of Jupyter Notebook. Several works [31]–[34]
have evaluated the use of the Jupyter Notebook platform with
respect to its use in data science projects. Many works evaluate
Jupyter Notebook on the basis of its use as a collaborative
tool and focus mainly on qualitative issues with reusability
and interpretability [31], [33], [34]. Other studies surveying
data scientists focus on improving user practices with Jupyter
Notebook, i.e. instilling guidelines for users to follow [32]. In
this work, we present a comparison of the Jupyter Notebook
platform with a GUI-based workflow platform, Texera.

Parallel frameworks. Data science tasks incorporate many
frameworks that manage parallelism and distributed comput-
ing, such as Ray and PyTorch [16], [18], [19]. These frame-
works are subsumed by both the script-based paradigm and
workflow-based paradigm, as exemplified by our experiments.

Abstracting complexity with operators. Data science tools
consistently seek to become more accessible to users by
simplifying complicated underlying actions into simple com-
mands. Prior work in this domain aims to design so-called
operators that abstract away the intricate details of data pro-
cessing, allowing users to focus on their analytical goal rather
than the operational complexities [35], [36]. These abstractions
ease adoption among those with limited programming skills in
both script-based platforms and workflow-based platforms.



VI. CONCLUSIONS

In this paper, we conducted a comparative analysis
of Jupyter Notebook (as a representative of script-based
paradigms) and Texera (as a representative of GUI-based
workflow paradigms) in data science tasks.

Jupyter Notebook. It presents a low-level code abstraction of
data analysis tasks for coders. This level of abstraction gives
users flexibility and freedom in how tasks are written and
controlled during execution. The advantages of this system
demand a substantial coding background, as users must be
capable of writing complex tasks and understanding their
state throughout execution. Data is encapsulated as variables,
making the understanding of data linkages or the state of the
data processing task implicit to the user. Furthermore, Jupyter
Notebook typically uses a single programming language in
one notebook, which limits its utility in collaborative environ-
ments involving participants who prefer other programming
languages.

Texera. It simplifies the data analysis process through a user-
friendly graphical user interface (GUI) and workflow represen-
tation as a directed acyclic graph (DAG). The system provides
a high-level abstraction for users to describe and understand
their data analysis task, which lowers the entry barrier to data
science activities. Such a workflow interface avoids potentially
overwhelming blocks of code for users without programming
skills. The modularized workflow also enables opportunities
for reusability, efficiency improvement, and flexibility to in-
tegrate multiple languages for different purposes. Meanwhile,
Texera’s workflow interface and execution model may restrict
flexibility for highly customized analyses.

Takeaways. Our empirical evidence underscores that Jupyter
Notebook and Texera have similar runtime performances for
data science tasks, and that each platform offers features
that cater to different target users and purposes. The choice
between them should be guided by the specific needs of the
application, the technical proficiency of the users, and the
desired balance between flexibility and ease of use. Jupyter
Notebook is more suited for users comfortable with program-
ming and seeking detailed control over their analysis, while
Texera is ideal for those who prefer a user-friendly interface
and streamlined workflow management. While our results are
developed on these two platforms, we hope to highlight how
the trade-off between performance and adaptability is a critical
consideration for future developments and comparative studies
of data science platforms.
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