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The goto Data Science Tool - Notebook
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The Need for Collaborative 
Data Analytics

• IT experts

• Limited domain knowledge

• Strong coding skills

• Domain experts

• Rich domain knowledge

• Limited IT/coding skills
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Introducing
The GUI-based Workflow System for Data Analytics

CollaborationCloud Service Domain Friendly AI/ML Access
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More Features…

Rich Built-in Operators

User Defined Functions (UDFs)
Java/Scala, Python, R

Version & Restore
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Collaboration only during  Editing is not 
Enough for Data Analytics…

Unlike Google Doc or Overleaf, data analytics 
requires an (extensive) execution phase. 
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Interactions during 
Collaborative 
Execution
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What Kind of Interactions?
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Interaction: 
Pause a 
Workflow

Texera | Yicong Huang 9



Interaction: 
Resume a 
Workflow
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Interaction: Read a 
Workflow’s State

Texera | Yicong Huang 11



Interaction: 
Modify a 
Workflow’s 
Logic
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Advanced Interaction – Debug

Overview

Demonstration of Udon: Line-by-line Debugging of User-
Defined Functions in Data Workflows

Yicong Huang, Zuozhi Wang and Chen Li, University of California, Irvine, USA

Udon Architecture (Integrated on Texera)

Acknowledgements: This work was supported by NSF IIS-2107150
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• Big data systems are complex, User-defined functions (UDFs) are even 

more complex. Debugging UDFs on big data systems are challenging.

• Introducing , a novel debugger for UDFs on big data systems, 

providing a gdb-like line-by-line debugging experience on UDFs.

• Enable collaborative debugging with multiple users on the same workflow, 

either on the same operator together or on separate operators.

• Implemented on top of an open-source data workflow system, Texera.

• Develop multiple data-related optimizations to dynamically attach and 

detach debuggers, reducing runtime overhead introduced by debuggers.
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5  for radius in range(1, 10):

6       city = r_tree.query((lat, lng), radius)

5  for radius in range(1, 10):

7       city = r_tree.query((lat, lng), radius)

if lat > 45 and radius == 8: breakpoint()
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Related Links

Debugging a UDF running in a Texera Workflow

Conditional Breakpoint

Debugger Frontend

Debugger Instructions

The Two-thread Execution Model

'hot-swapping' UDF code with 

breakpoint hooks as new lines. 

Unlike native debuggers, which 

can't swap active code, our 

method leverages idle times 

between tuple processing in 

data engines.

distinguish between predicates 

on intermediate variables and 

those on incoming tuples. Pull 

up data-related predicates to be 

evaluated once before the 

tuple, instead of evaluating it 

as a line state repeatedly in 

processing of the tuple. 

Udon GitHub:  https://github.com/Texera/Udon

Live System:   https://texera.ics.uci.edu

Demo Video:   https://youtu.be/UGOa1XJMeA8

Full research paper: "Udon: Efficient Debugging of User-Defined Functions in Big Data Systems with Line-by-
Line Control.”  Yicong Huang, Zuozhi Wang, and Chen Li. SIGMOD 24, 26 pages. https://doi.org/10.1145/3626712 

Python UDF runs 

on a separated 

virtual machine 

• to be responsive to control messages.

• to be managed by debuggers.

The data processing thread 

checks if there is a debug 

instruction at the execution 

point specified by the user. 

Naturally, it could be between 

processing of two tuples.

• Collaborative Data Analytics

• Web-based Cloud Service

• Interactive Workflows

• Multi-language Support 

(Python, Java/Scala, R)

• Actor-based Distributed 

Dataflow Engine

• Advanced AI/ML Support

• Open Source!

• Click on the code editor lines to set a breakpoint.

• Right click on a breakpoint to add a condition.

• Gracefully suspends the entire workflow execution 

when a breakpoint is hit.

• Also can pre-set breakpoints before the execution.

• Step through the UDF code, move the execution 

to the next line, next function. 

• Step through the data, to observe the next tuple.

• Retry the current tuple after errors occur.

• Control workers of the operator separately.

• Evaluate any expressions at any point

• Update faulty UDF code without terminating a workflow

• Fix erroneous intermediate state between lines

• Multiple users can share 

the same execution and 

share the same debugging 

session.

• Collaboratively debug the 

same operator, or work on 

different operators at the 

same time.

Collaborative Debugging

Udon GitHub Repo

Texera | Yicong Huang 13



How to Support Interactions?
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Method 1: Pause a Workflow with 
Direct Control Message (DCM)

DCM
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How to Support Pause?
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Method 2: Pause a Workflow with 
Embedded Control Message (ECM)
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How to Support Pause?
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How to Support Read States?

Incorrect global state introduced by DCM
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Combining ECMs and DCMs to Read States
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ReadState
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How to Support 
Modifications?

Strict Consistency
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Experiments

Low Interaction Latency

High Scalability

Low Runtime Overhead
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Summary of 

WORKFLOW COLLABORATION INTERACTIONS
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Open Source
Apache-2.0 License
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Project and Usage Metrics

# of user accounts 332 # of projects 86

# of workflows 2,481 # of executions 50,950

# of workflow versions 357,000 # of publications 23

# of deployed servers 7 # of CPU cores in the largest 
deployment

400

# of files on GitHub 1,291 # of lines of code on GitHub 101,690

# of pull requests on GitHub 2,252 # of current PhD students 7

# of collaborating professors 17 # of involved undergraduates 80+

# of completed PhD theses 3 # of development years 8
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