
Texera: A System for
Collaborative and
Interactive Data
Analytics Using
Workflows
Zuozhi Wang, Yicong Huang, Shengquan Ni,
Avinash Kumar, Sadeem Alsudais, Xiaozhen
Liu, Xinyuan Lin, Yunyan Ding, and Chen Li

The goto Data Science Tool - Notebook

Texera | Yicong Huang 2

The Need for Collaborative
Data Analytics

• IT experts

• Limited domain knowledge

• Strong coding skills

• Domain experts

• Rich domain knowledge

• Limited IT/coding skills

Texera | Yicong Huang 3

Introducing
The GUI-based Workflow System for Data Analytics

CollaborationCloud Service Domain Friendly AI/ML Access

Texera | Yicong Huang 4

More Features…

Rich Built-in Operators

User Defined Functions (UDFs)
Java/Scala, Python, R

Version & Restore

Texera | Yicong Huang 5

Collaboration only during Editing is not
Enough for Data Analytics…

Unlike Google Doc or Overleaf, data analytics
requires an (extensive) execution phase.

Texera | Yicong Huang 6

Interactions during
Collaborative
Execution

Texera | Yicong Huang 7

What Kind of Interactions?

Texera | Yicong Huang 8

Interaction:
Pause a
Workflow

Texera | Yicong Huang 9

Interaction:
Resume a
Workflow

Texera | Yicong Huang 10

Interaction: Read a
Workflow’s State

Texera | Yicong Huang 11

Interaction:
Modify a
Workflow’s
Logic

Texera | Yicong Huang 12

Advanced Interaction – Debug

Overview

Demonstration of Udon: Line-by-line Debugging of User-
Defined Functions in Data Workflows

Yicong Huang, Zuozhi Wang and Chen Li, University of California, Irvine, USA

Udon Architecture (Integrated on Texera)

Acknowledgements: This work was supported by NSF IIS-2107150

Texera

Workflow

 Web GUI

Execution

Engine

Workflow with UDF
UDF

Code Editor

Debugger

Frontend

Debug-aware Coordinator

Built-in

Operator UDF Operator

Debugger

UDF Operator

Debugger …

…

Users

Machine

Cluster

UDF Runtime

• Big data systems are complex, User-defined functions (UDFs) are even

more complex. Debugging UDFs on big data systems are challenging.

• Introducing , a novel debugger for UDFs on big data systems,

providing a gdb-like line-by-line debugging experience on UDFs.

• Enable collaborative debugging with multiple users on the same workflow,

either on the same operator together or on separate operators.

• Implemented on top of an open-source data workflow system, Texera.

• Develop multiple data-related optimizations to dynamically attach and

detach debuggers, reducing runtime overhead introduced by debuggers.

lat > 45

UDF Code Debugger

T TT T TT

Input Tuples Output Tuples

radius == 8

UDF Operator

Line 5

Line 6

Pulled-up Predicate

Breakpoint Check

Breakpoint Check

TrueFalse

UDF Code

Line 5

Line 6

UDF Code

T TT

Future Tuples

5 for radius in range(1, 10):

6 city = r_tree.query((lat, lng), radius)

5 for radius in range(1, 10):

7 city = r_tree.query((lat, lng), radius)

if lat > 45 and radius == 8: breakpoint()

Swapped UDF Code

Hot-swapping

Code

6

T T

Received a Breakpoint

Time

Break

Debugger

Runtime Optimizations

OperatorOperator

Twitter API Geo Tagger Timezone Tagger File Sink

Coordinator

Proxy

F S

Operator

UDF SR

F SR

Operator

FR

Logical View

Physical View

PVM

JVM

Control Channel

Data ChannelS

R Receiver

Sender

F Computation Function

Set Bp

Write

Explicit Check (Read) Explicit Check (Read)

CP Thread

Shared

Variables

DP Thread

Debug Instruction

Debugger Attached

Explicit CheckUDF Line Debugger
Time

Related Links

Debugging a UDF running in a Texera Workflow

Conditional Breakpoint

Debugger Frontend

Debugger Instructions

The Two-thread Execution Model

'hot-swapping' UDF code with

breakpoint hooks as new lines.

Unlike native debuggers, which

can't swap active code, our

method leverages idle times

between tuple processing in

data engines.

distinguish between predicates

on intermediate variables and

those on incoming tuples. Pull

up data-related predicates to be

evaluated once before the

tuple, instead of evaluating it

as a line state repeatedly in

processing of the tuple.

Udon GitHub: https://github.com/Texera/Udon

Live System: https://texera.ics.uci.edu

Demo Video: https://youtu.be/UGOa1XJMeA8

Full research paper: "Udon: Efficient Debugging of User-Defined Functions in Big Data Systems with Line-by-
Line Control.” Yicong Huang, Zuozhi Wang, and Chen Li. SIGMOD 24, 26 pages. https://doi.org/10.1145/3626712

Python UDF runs

on a separated

virtual machine

• to be responsive to control messages.

• to be managed by debuggers.

The data processing thread

checks if there is a debug

instruction at the execution

point specified by the user.

Naturally, it could be between

processing of two tuples.

• Collaborative Data Analytics

• Web-based Cloud Service

• Interactive Workflows

• Multi-language Support

(Python, Java/Scala, R)

• Actor-based Distributed

Dataflow Engine

• Advanced AI/ML Support

• Open Source!

• Click on the code editor lines to set a breakpoint.

• Right click on a breakpoint to add a condition.

• Gracefully suspends the entire workflow execution

when a breakpoint is hit.

• Also can pre-set breakpoints before the execution.

• Step through the UDF code, move the execution

to the next line, next function.

• Step through the data, to observe the next tuple.

• Retry the current tuple after errors occur.

• Control workers of the operator separately.

• Evaluate any expressions at any point

• Update faulty UDF code without terminating a workflow

• Fix erroneous intermediate state between lines

• Multiple users can share

the same execution and

share the same debugging

session.

• Collaboratively debug the

same operator, or work on

different operators at the

same time.

Collaborative Debugging

Udon GitHub Repo

Texera | Yicong Huang 13

How to Support Interactions?

Texera | Yicong Huang 14

System Architecture
 Browser

 User 1

Shared Editing Server

Control Channels

Actor System

Data Channels

Shared Execution Manager

Execution

Engine

Frontend

UI

Web

Server

 Browser

 User 2

 Browser

 User 3

Worker Actor

Control Processor

Data Processor

Worker Actor

Control Processor

Data Processor

Coordinator Actor

Workflow Compiler Scheduer

 Browser

 User 1

Shared Editing Server

Control Channels

Actor System

Data Channels

Shared Execution Manager

Execution

Engine

Frontend

UI

Web

Server

 Browser

 User 2

 Browser

 User 3

Worker Actor

Control Processor

Data Processor

Worker Actor

Control Processor

Data Processor

Coordinator Actor

Workflow Compiler Scheduer

 Browser

 User 1

Shared Editing Server

Control Channels

Actor System

Data Channels

Shared Execution Manager

Execution

Engine

Frontend

UI

Web

Server

 Browser

 User 2

 Browser

 User 3

Worker Actor

Control Processor

Data Processor

Worker Actor

Control Processor

Data Processor

Coordinator Actor

Workflow Compiler Scheduer

Texera | Yicong Huang 15

Method 1: Pause a Workflow with
Direct Control Message (DCM)

DCM

Paused Paused Paused

Unprocessed

Coordinator

Data

CA B

A B C

Interaction

Data

DCM

Paused Paused Paused

Unprocessed

Coordinator

Data

CA B

A B C

Interaction

Data

How to Support Pause?

Texera | Yicong Huang 16

Method 2: Pause a Workflow with
Embedded Control Message (ECM)

Coordinator

Data

B CA
Marker

ECM

Interaction

B CA

Marker

Paused Paused Running

Coordinator

Data

B CA
Marker

ECM

Interaction

B CA

Marker

Paused Paused Running

How to Support Pause?

Texera | Yicong Huang 17

How to Support Read States?

Incorrect global state introduced by DCM

Texera | Yicong Huang 18

Combining ECMs and DCMs to Read States

Coordinator

A B
ReadState

t

Coordinator

A B

ReadState

t

Texera | Yicong Huang 19

How to Support
Modifications?

Strict Consistency

Texera | Yicong Huang 20

Experiments

Low Interaction Latency

High Scalability

Low Runtime Overhead

Texera | Yicong Huang 21

Summary of

WORKFLOW COLLABORATION INTERACTIONS

Texera | Yicong Huang 22

Open Source
Apache-2.0 License

Texera | Yicong Huang 23

Project and Usage Metrics

of user accounts 332 # of projects 86

of workflows 2,481 # of executions 50,950

of workflow versions 357,000 # of publications 23

of deployed servers 7 # of CPU cores in the largest
deployment

400

of files on GitHub 1,291 # of lines of code on GitHub 101,690

of pull requests on GitHub 2,252 # of current PhD students 7

of collaborating professors 17 # of involved undergraduates 80+

of completed PhD theses 3 # of development years 8

Texera | Yicong Huang 24

Texera: A System for Collaborative and Interactive Data Analytics
Using Workflows

Yicong HuangZuozhi Wang

Acknowledgements: This work was supported by NSF awards IIS-1745673 and IIS-2107150.

Shengquan Ni Avinash Kumar Sadeem Alsudais

Xiaozhen Liu Xinyuan Lin Yunyan Ding Chen Li

	Slide 1: Texera: A System for Collaborative and Interactive Data Analytics Using Workflows
	Slide 2: The goto Data Science Tool - Notebook
	Slide 3: The Need for Collaborative Data Analytics
	Slide 4: Introducing The GUI-based Workflow System for Data Analytics
	Slide 5: More Features…
	Slide 6: Collaboration only during Editing is not Enough for Data Analytics…
	Slide 7: Interactions during Collaborative Execution
	Slide 8: What Kind of Interactions?
	Slide 9: Interaction: Pause a Workflow
	Slide 10: Interaction: Resume a Workflow
	Slide 11: Interaction: Read a Workflow’s State
	Slide 12: Interaction: Modify a Workflow’s Logic
	Slide 13: Advanced Interaction – Debug
	Slide 14: How to Support Interactions?
	Slide 15: System Architecture
	Slide 16: Method 1: Pause a Workflow with Direct Control Message (DCM)
	Slide 17
	Slide 18: How to Support Read States?
	Slide 19: Combining ECMs and DCMs to Read States
	Slide 20: How to Support Modifications?
	Slide 21: Experiments
	Slide 22: Summary of
	Slide 23: Open Source
	Slide 24: Project and Usage Metrics
	Slide 25: Texera: A System for Collaborative and Interactive Data Analytics Using Workflows

